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1.Introduction  
♦ Tevatron complex has 6 rings. Wide range of instabilities 
Ø Only Debuncher has no problems with beam stability 

 Instability nature Damper 
 Longitudinal Transverse Longitudinal Transverse 
Booster Multi-bunch, 

cavities 
Space charge Narrow 

band 
- 

Main 
injector 

Multi-bunch Multi-bunch Bunch-by-
bunch 

Bunch-by-
bunch 

Accumulator Stochastic 
cooling 

Instability due 
to stored ions 

- Wide-band 

Recycler - Head-tail, wall 
resistivity 

- Planned 
Wide-band 

Tevatron Bunch dancing Head-tail, wall 
resistivity 

Bunch-by-
bunch 

Bunch-by-
bunch 
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2. Head-tail instability in Tevatron1  
♦ Transverse instability has been a problem for long time 
Ø It forces us to use large chromaticity 

• Bad effect on beam lifetime 
♦ Significant progress achieved in understanding and correcting 
Ø Measurements of instability increment set the low boundary of 

Z⊥ to ≈ 5 MΩ/m (100 MHz) 
Ø Main contribution came from 2 laminated Lambertson magnets 

which triple Z⊥ 
• The first unused Lambertson was removed in 2002 
• Another one (injection Lambertson) was shielded in 2003 

Ø Presently transverse impedance is dominated by the wall 
resistivity of main vacuum chamber (stainless steel) 

                       
1 J. Annala, A. Burov, P. Ivanov, V. Lebedev, E. Lorman, V. Ranjbar, V. Scarpine, V. Shiltsev 
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Signals of the vertical pickup and their deconvolution for 
turn 951. Measurements are performed before C0 
lambertson magnet removal. Solid lines – unprocessed 
signals, dashed lines – deconvolution of the signals. The 
lattice chromaticities (pdν/dp) are: ν′x = -1.75, ν′y = -3.5; 
bunch population - 2.6⋅1011. Vertical lines show boundaries 
of the RF bucket. 

 

Direct Instability Observations at injection (150 GeV) 
♦ A fast segmented memory digital oscilloscope (0.4 ns sampling rate) 
Ø connected to the horiz. and vert. 1-meter long strip-line pickups 
Ø Single bunch (80 ns data taking), 2000 turns  

♦ Data analysis  
Ø Both the sum and 

difference signals are 
deconvoluted.  
• Sum signal 

represents the 
particle distribution 
along the bunch 

• Difference signal 
represents the 
dipole moment along 
the bunch.  
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Dipole moments along the bunch for the 
same measurements as previous Figure.  
Curves are separated in time by 301 turns 
(about quarter of synchrotron oscillation). 
 × - turn 0,  + - turn 301,   
 É - turn 602,  ú - turn 903. 

♦ Measurement are synchronized with 
inject.  

♦ Chromaticities are set below zero 
so that the mode l = 0 would be 
unstable.  
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♦ Strong coupling between vertical 

and horizontal degrees of freedom 
results in the oscillations of the 
amplitudes with period about 57 turns.  

♦ In average the amplitudes exponentially grow with growth rate of 
115±5 s-1 (420 turns)  
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D a

Transverse impedance estimate 
♦ Tevatron stainless steel vacuum chamber has a square cross section with  

2h = 6 cm, Z⊥ ~ 0.9 MΩ/m at 100 MHz.  
Ø Comparison with numerical simulations for Gaussian beam yielded that 

the measured impedance value is about 5 times larger 
♦ Two Lambertson magnets were identified as a major source of impedance. 

Its value can be estimated by integrating the resistance over the low 
frequency current passing through the laminas 

♦ Impedance per unit length:     

⇒  ( ) 
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where Z0 ≈ 377 Ω,   
d ≈ 1 mm is the lamination thickness,  
g ≈ 0.5 – 1 is a geometric form-factor.   

Ø For µ = 200, a/d=10, the Lambertson 
aperture = half of the main vacuum chamber 
aperture, and total length of the magnet L = 11.2 m  
⇒ each lambertson makes the same contribution as  6 km ring  
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Stability region for the head-tail modes in the chromaticity space.  
 

 
Measurements are performed with single proton bunch of 2.65⋅1011 particles 
4 – before C0 lambertson removal 
2 – after C0 lambertson removal 
1, 3 – orbit displaced in injection lambertson (after C0 removal) 
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Growth rates of head-tail modes 
♦ For air-bag (=hollow beam) distribution the single-bunch modes are 

described by a single head-tail wave number l  with the transverse 
offset expressed as a sum over modes 

( )∑ −+=
l

ll tiiilAx ωϕχϕϕ cosexp)(  

where  ϕcos0zz =  is the longitudinal coordinate 
)/(0 ηνχ Rz′=  is the head tail phase 

♦ For coupled-bunch description with uniform bunch spacing the modes 
are described by two numbers: intra-bunch head-tail number l and 
multi-bunch number m.  In this case,  

( )∑ −++=
ml

mllmn tiNnmiilBx
,

/2cosexp)( ωπϕχϕϕ  
 

Ø When bunches do not talk to each other, the eigen-frequencies do 
not depend of the multi-bunch mode number: mll ωω =  
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♦ For Tevatron the single-bunch modes are driven by the high-
frequency impedance, zc σω /≥  or f > 50 MHz, while the coupled-
bunch modes are related to much lower frequency range of the 
impedance, 00 ωωω N≤≤  . In general, the growth rates are  

c
lm

s
llm Λ+Λ=Λ  

Ø where for air-bag model the single- and coupled-bunch terms are 
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♦ The resistive wall impedance is slowly decreasing, ω/1 . In the case 
of Tevatron that makes both contributions comparable. They are  

[ ])()(ˆ 22
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    only one term making largest contribution in the sum for c
lmΛ  is left 
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Single and Coupled bunch Growth rates as functions of chromaticity 
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                                                                           l = 3 
 
 
 
 
 
 
 
Single bunch (solid lines), s

lΛ ,  and most unstable Coupled-Bunch 
(dashed), c

lm0
Λ , growth rates for l=1 (red), l=2 (green) and l=3 (blue) 
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Other improvements in theoretical description 
♦ To achieve better accuracy of the model two additional 

improvements of the theory have been taken into account  
Ø Numerical multi-particle simulations were carried out to get more 

accurate result for the instability growth for the gaussian 
distribution (instead of air-bag distribution) 
• Resistive wall impedance have been used 

Ø Coupling has been taken into account 
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where Mais-Ripken beta-functions are used 
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3. Suppression Head-tail Instability in Tevatron by 
transverse damper 
♦ Large chromaticity has been used to suppress the instability 
Ø Problems with beam-beam and dynamic aperture 

♦ Transverse damper was designed to suppress bunch-by-bunch modes 
Ø Unexpectedly it also helped with the head-tail instability 
Ø It has moved the boundary chromaticity from ~6 to ~4 units  

• Thus, experiment verified that the damper damps the single 
bunch head-tail instability 

 

LPF 1turn
delay

53.1 MHz 53.1 MHz

from
BPM to

kicker

 
Damper schematic 
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♦ For air-bag distribution, the damping rates are  
2

)()( θθ χχ i
l

i
ll eqJeqJg −−++=Γ  

czq RF /0ω=  - the phase advance of modulation frequency, RFω   
Ø The modulation is assumed to be 

• as )/sin( 0 θ+∝ zqz  at the pickup  
• and  )/cos( 0 θ+∝ zqz  at the kicker 

Ø The phase shift θ is a parameter for optimization.  
Ø This scheme makes all the head-tail modes damped simultaneously 
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                                                     θ=36 deg 
          l = 1                                                                         
 

      l = 2                                         l = 3 

 
 
 
 

    0    2      4             6      8 
     Chromaticity 

Solid lines - damper 
Dashed lines – instability 
 
 

♦ For θ=0, damping rates of 
odd modes (l=1,3…) vanish 
at low chromaticity, ν ′, as 

2ν ′ , while the head-tail 
rates go down linearly 
Ø The main stopper is 

the lowest-order odd 
mode, l =1 

♦ At optimal θ=36° all the 
modes can be effectively 
damped for all 
chromaticities 
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4. Resistive wall instability in Recycler 
Recycler parameters 

• High current p  accumulator with stochastic & electron cooling 
• Kinetic energy 8 GeV 
• Circumference 3328 m 
• Tunes, νx /νy  25.58/24.42 
• Number of particles (1.2 → 6)⋅1012  
• Number of bunches 1 - 9 
• Bunching factor 0.2 - 0.8 
• RF type Barrier bucket 

♦ Very first experimental observations showed that if machine 
chromaticity is reduced close to zero and the beam is sufficiently 
cold there appears a transverse instability  
Ø It caused the beam loss but the emittance after the beam was 

stabilized was much smaller than it could be expected from the 
acceptance 

Ø The origin of the instability was unknown => detailed studies   

V(  )

U(  )
(  )
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Experimental results 
♦ A fast digital oscilloscope connected to the sum and differential 

outputs of vertical pickups 
Ø Continuous record ~90,000 turns 128 ns sampling time 
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Raw BPM signals 
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Betatron amplitudes and betatron phases along 
the bunch for chosen turns 

♦ Betatron amplitudes 
and phases along the 
bunch were computed 
from three 
consecutive turns 

♦ There are very little 
motion in the bunch 
head  

♦ The maximum 
amplitude is achieved 
at ~2/3 of bunch 
length 
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          Dependence of betatron amplitude and  

    phase on  turn number 

♦ Betatron amplitude 
grows exponentially 
while it is smaller than 
the aperture 

♦ Betatron phase has 
ripple at power line 
harmonics 
Ø Corresponding tune 

variations are: 
∆ν60=4.6⋅10-4,  
∆ν180=3.2⋅10-4 

♦ Particle loss stabilizes 
instability and causes 
betatron phase slip  



Collective instabilities in the Tevatron Complex, Lebedev and Burov, HB-2004, October 18-22, 2004 19 

Theoretical model  
♦ Barrier bucket RF makes flat density along the bunch  
♦ Bunch is so cold that the longitudinal particle displacement in the course of 

instability development is much smaller than the bunch length 
♦ Tail-to-head feedback creating the instability is carried out through one 

turn delay 
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♦ Solution was carried out numerically for the resistive wall impedance 
Ø Approximation of flat vacuum chamber has been used 
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 Amplitudes and phases along the  
  bunch for first 3 unstable modes 

♦ Detuning (quadrupole) wake makes 
tunes dependent on position along 
the bunch 
Ø It is responsible for the fact that 

maximum amplitude is achieved at 
2/3 of bunch length 

Ø Without detuning wake the 
maximum amplitude would be 
achieved at the bunch tail 

♦ Good agreement between simulation 
results and the experimental 
measurements for both the 
instability growth rate and mode 
structure of the lowest mode 
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♦ 600 macro-particles have been used in numerical simulations 
♦ Good agreement with analytical model for B=1 (continuous beam) 
Ø Divergence for large mode numbers is related with insufficient number of 

particles per oscillation length 
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Instability growth rates of unstable modes for  
   different bunching factors, B; Nb = 6⋅1012. 

♦ For the same 
number of 
particles the 
increment grows 
with bunching 

 4/1/1 B∝   

2 particle model 
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Structure and spectrum of mode m = 101, B = 0.3.  

♦ Maximum amplitude is achieved at 0.25/0.3 ~ 0.83 of bunch length 
♦ Oscillation frequency grows from head to tail 
♦ Maximum of spectral density is achieved at  

0
5.2

f
B

n
f n ≈  

♦ For given mode number the bunching moves both the mode frequency 
and the mode growth rate to higher values 
Ø More rigid requirements for the feedback system to control instability 
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Requirements for instability damping 
♦ Tune spread is a basic mechanism for beam stabilization 

( )
p
p

nn
∆′−≈∆ νην  

♦ Space charge (incoherent) tune shift is 
expected to be very large ∆νsc ≈ 0.03 – 
0.1 
Ø It will suppress Landau damping due 

to tune spread up to very high 
frequencies 

63,/ −≈∆≈∆ scscscn FFνν  
Ø As result, the required frequency 

band of the instability damper goes to well above 100 MHz 
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Nb = 6⋅1012, B = 0.3,  
ε|| = 50 eV s, ∆p/p = 7⋅10-4, 
 ν’ = -2 
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Conclusions and plans 
♦ Presently, instabilities do not produce severe limitations on the 

collider luminosity  
♦ Transverse instabilities in Tevatron and Recycler are well 

understood 
Ø We plan further reduction Tevatron chromaticity  

• Introduction of cubic (octupole) non-linearities is main direction 
• Further improvements of head-tail damper may be required if 

we will encounter operational difficulties with octupoles 
Ø To suppress Recycler instability we plan to built two band 

transverse damper: 10 kHz – 10 MHz and 10 MHz – ≥200 MHz 
♦ Longitudinal instability in Tevatron is presently stabilized by bunch-

by-bunch damper 
Ø To make shorter bunches we need better understanding how it 

works and how it can be suppressed
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Bunch dancing in Tevatron2 
♦ Long-term coherent synchrotron oscillations of proton bunches are 

observed in Tevatron. 
♦ Bunch shape at the oscillations differs for uncoalesced and 

coalesced bunches.  
Ø Uncoales. bunches – osc. persist for hours 
Ø Coales. – oscillations decay in ~5 min. 

♦ Longitudinal bunch-by-bunch damper accelerates the damping 
 

RF phase

Uncoalecsed bunches

RF phase

Coalecsed bunches

 
 

                       
2 a) Ronald Moore, et.al., Longitudinal Bunch Dynamics in the Tevatron 
  b) C.Y. Tan, et. al., The Tevatron Bunch by Bunch Longitudinal Dampers 
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♦ Without coherent interactions the synchrotron tune spread would 

damp oscillations within seconds  
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♦ Effect of inductive longit. impedance 
separates coherent and incoherent 
tunes and prevents decoherence at3 

|∆Ω| > δΩ c 
• where δΩ is synchrotron tune 

spread,  
• ∆Ωc - coherent tune shift 

produced by the impedance.  
♦ For Tevatron at 150 GeV it yields: 

    |Z/n|[Ω] > 2·1011φ 5/N  ≈ 1 Ω 
 

                       
3 V.Balbekov, S.Ivanov, 1991 
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